On the computational complexity of membership problems for the completely positive cone and its dual
نویسندگان
چکیده
Copositive programming has become a useful tool in dealing with all sorts of optimisation problems. It has however been shown by Murty and Kabadi [K.G. Murty and S.N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Mathematical Programming, 39, no.2:117–129, 1987] that the strong membership problem for the copositive cone, that is deciding whether or not a given matrix is in the copositive cone, is a co-NP-complete problem. From this it has long been assumed that this implies that the question of whether or not the strong membership problem for the dual of the copositive cone, the completely positive cone, is also an NP-hard problem. However, the technical details for this have not previously been looked at to confirm that this is true. In this paper it is proven that the strong membership problem for the completely positive cone is indeed NP-hard. Furthermore, it is shown that even the weak membership problems for both of these cones are NP-hard. We also present an alternative proof of the NP-hardness of the strong membership problem for the copositive cone.
منابع مشابه
The Computational Complexity of Duality
We show that for any given norm ball or proper cone, weak membership in its dual ball or dual cone is polynomial-time reducible to weak membership in the given ball or cone. A consequence is that the weak membership or membership problem for a ball or cone is NP-hard if and only if the corresponding problem for the dual ball or cone is NP-hard. In a similar vein, we show that computation of the...
متن کاملExponential membership function and duality gaps for I-fuzzy linear programming problems
Fuzziness is ever presented in real life decision making problems. In this paper, we adapt the pessimistic approach tostudy a pair of linear primal-dual problem under intuitionistic fuzzy (I-fuzzy) environment and prove certain dualityresults. We generate the duality results using exponential membership and non-membership functions to represent thedecision maker’s satisfaction and dissatisfacti...
متن کاملChapter 8 Copositive Programming
A symmetric matrix S is copositive if yT S y≥0 for all y≥0, and the set of all copositive matrices, denoted C∗, is a closed, pointed, convex cone; see [25] for a recent survey. Researchers have realized how to model many NP-hard optimization problems as copositive programs, that is, programs over C∗ for which the objective and all other constraints are linear [7, 9, 13, 16, 32–34]. This makes c...
متن کاملComputational fluid dynamics simulation of the flow patterns and performance of conventional and dual-cone gas-particle cyclones
One of the main concerns of researchers is the separation of suspended particles in a fluid. Accordingly, the current study numerically investigated the effects of a conical section on the flow pattern of a Stairmand cyclone by simulating single-cone and dual-cone cyclones. A turbulence model was used to analyze incompressible gas-particle flow in the cyclone models, and the Eulerian–Lagrangian...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 57 شماره
صفحات -
تاریخ انتشار 2014